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ABSTRACT

D-tert -Leucine was prepared with an enantiomeric excess of >99% by an enzyme-catalyzed oxidative resolution of the racemic mixture of
DL-tert -leucine with use of leucine dehydrogenase. The L-amino acid was oxidized completely due to coupling of the primary reaction with a
highly efficient irreversible NAD +-regenerating step by NADH oxidase.

Due to its bulky and hydrophobictert-butyl side chain,tert-
leucine finds increased use as a building block for the
synthesis of chiral auxiliaries and biologically active com-
pounds.1 Several preparation methods have been reported
either by resolution of racemic mixtures or by enantioselec-
tive synthesis. Enzymes such as hydantoinases, penicillin
acylases, and lipases are extremely useful catalysts for the
resolution of racemic mixtures yielding enantiomerically pure
L- or D-tert-leucine.2 Enantioselective chemical methods
usually include the formation and separation of diastereo-
mers.3 A direct enzyme-catalyzed route is applied for the
production ofL-tert-leucine at an industrial scale. Degussa
developed this synthesis route4 based on the NADH-
dependent reductive amination of the corresponding keto acid
catalyzed by leucine dehydrogenase.5 To reach a complete
conversion and to transfer this reaction to a larger scale, it
was coupled with an efficient NADH-regeneration step,
which is given by the formate/formate dehydrogenase
system.6

D-tert-Leucine, however, cannot be synthesized through
such a reductive amination step as a correspondingD-specific
leucine dehydrogenase is not known. One route developed
by Degussa utilizingD-hydantoinase has the limitation that
D-tert-leucine must be released from the formedN-carbam-
oyl-D-tert-leucine by a treatment with HNO2. Quite recently,
a chemoenzymatic approach to synthesize theD-compound
has been described by Laumen et al.7 utilizing the enantio-
selective cleavage ofN-acetyl-tert-leucine esters by aBacillus
licheniformisprotease. This route requires a preceding two-
step derivatization of the racemic substrate. The synthesis
of the preferred substrate, racemicN-acetyl-tert-leucine
chloroethyl ester, and the enzymatic resolution were scaled
up to the multi-kilogram level.

We describe herein an enzyme-catalyzed synthesis for
D-tert-leucine starting with racemicDL-tert-leucine. Leucine
dehydrogenase, which is the appropriate catalyst for the
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reductive amination of the keto acid, was used for the reverse
reaction to oxidizeL-tert-leucine. In general, unnatural
derivatives of enzyme substrates are accepted with reduced
activity. Table 1 summarizes the kinetic constants of leucine

dehydrogenase forL-leucine andL-tert-leucine and confirms
that the latter is oxidized with decreased activity and affinity.
The D-isomer of tert-leucine inhibits the oxidation of the
L-compound slightly; the kinetic data point to a noncompeti-
tive inhibition type (Ki ) 89.4 mM).

The oxidation reaction of NAD+-dependent dehydrogen-
ases is severely hampered by their equilibrium, which favors
the formation of the reduced products.8 Therefore, the
application of NAD+-dependent enzymes for the oxidative
direction is only possible if a highly efficient method for
NAD+ regeneration is available. Several methods for the
regeneration of NAD+ were demonstrated to be useful, but
none was applicable in preparative scale. For example, the
reaction rates by coupling with electron-transfer dyes such
as methylene blue, methyl viologen, phenazine methosulfate,
or FMN are too slow.9 Other systems such as 2-oxoglutarate/
glutamate dehydrogenase, pyruvate/lactate dehydrogenase,
oxalacetate/malate dehydrogenase, or acetaldehyde/alcohol
dehydrogenase10 require stoichiometric quantities of unstable
keto compounds, and the equilibrium of these reactions
prevents a complete oxidation.

Quite recently, we identified, isolated, and characterized
a NADH oxidase fromLactobacillus breVis,11 which seems
to be well suited for the regeneration of NAD+. The reduced
byproduct of this enzyme is H2O. The reaction may be
considered as irreversible, which means that it is the driving
force in a coupled approach according to Scheme 1 inde-
pendent of the equilibrium of the primary reaction catalyzed
by dehydrogenases.

NADH oxidase fromL. breVis is efficiently overproduced
in a recombinantEscherichia colistrain. Figure 1 shows the
time course of the oxidation ofL-tert-leucine out of the
racemic mixture. Starting with 0.25 U mLl-1 of leucine
dehydrogenase12 and an excess of NADH oxidase (4.2 U
mL-1), the reaction was completed after 300 min. The
concentration ofD-tert-leucine remained constant during this
process. On the basis of the degradation ofL-tert-leucine
within the first 30 min, a reaction rate of 0.12µmol per min
was observed, which corresponds to an activity of 0.12 U
mL-1.

In summary, an oxidative resolution of the racemic mixture
of DL-tert-leucine with leucine dehydrogenase was applied
to obtainD-tert-leucine with an excellent enantiomeric excess
of >99%. Despite the unfavorable equilibrium of the
dehydrogenase reaction, theL-amino acid was oxidized
completely due to the coupled irreversible NAD+-regenerat-
ing step by NADH oxidase. This kind of NAD+ regeneration
will allow the use of other NAD+-dependent enzymes to
prepare enantiomerically pure compounds by oxidation.
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Table 1. Kinetic Data of Leucine Dehydrogenase from
Bacillus cereusfor L-Leucine andL-tert-Leucine (0.2 mM
NAD+, pH 8.0)

amino acid Km (mM) vmax (U mg-1)

L-leucine 0.88 24
L-tert-leucine 9.0 0.33

Scheme 1. Leucine Dehydrogenase Catalyzed Preparation of
D-tert-Leucine2 by Selective Oxidation of Racemictert-Leucine

1a

a NAD+ is regenerated simultaneously by NADH oxidase.

Figure 1. Time course of the enzyme-catalyzed oxidation ofL-tert-
leucine out of the racemic mixture ([) and the ee value forD-tert-
leucine (0).
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